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Abstract. It was proved earlier by A. Ambainis and R. Freivalds that
the quantum finite automata with pure states can have exponentially
smaller number of states than the deterministic finite automata recog-
nizing the same language. There is a never published “folk theorem”
claiming that the quantum finite automata with mixed states are no
more than super-exponentially concise than the deterministic finite au-
tomata. It is not known whether the super-exponential advantage of the
quantum automata with mixed states is really achievable.
We show how this problem can be reduced to a certain problem about
permutation groups, namely: (1) if there is a fixed constant c and an in-
finite sequence of distinct integers n such that for each n there is a group
Gn of permutations of the set {1, 2, . . . , n} such that |Gn| = eΩ(n log n)

and the pairwise Hamming distance of permutations is at least c · n,
then (2) there is an infinite sequence of languages Ln such that for each
language there is a quantum finite automata with mixed states that rec-
ognizes the language Ln and has O(n) states, while any deterministic
finite automaton recognizing Ln must have at least eΩ(n log n) states.
We do not know whether (1) is true, but we provide a list of several
known results on permutation groups, that possibly could be used to
prove (1). However, note that if (1) turns out to be false, it does not
imply, that (2) is also false.

1 Introduction

A. Ambainis and R. Freivalds proved in [1] that for recognition of some lan-
guages the quantum finite automata can have smaller number of states than the
deterministic ones, and this difference can even be exponential. The proof con-
tained a slight non-constructiveness, and the exponent was not shown explicitly.
For probabilistic finite automata exponentiality of such a distinction was not yet
proved. The best (smaller) gap was proved by Ambainis [2]. The languages rec-
ognized by automata in [1] were presented explicitly but the exponent was not.
In a very recent paper by R.Freivalds [3] the non-constructiveness is modified,
and an explicit (and seemingly much better) exponent is obtained at the expense
of having only non-constructive description of the languages used. Moreover, the
best estimate in this paper was proved under the assumption of the well-known
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Artin’s Conjecture (1927) in Number Theory. [3] contains also a theorem that
does not depend on any open conjectures but the estimate is worse, and the
description of the languages used is even less constructive. This seems to be the
first result in finite automata depending on open conjectures in Number Theory.

The following two theorems are proved in [3]:

Theorem 1. Assume Artin’s Conjecture. There exists an infinite sequence of
regular languages L1, L2, L3, . . . in a 2-letter alphabet and an infinite sequence
of positive integers z1, z2, z3, . . . such that for arbitrary j:

(1) there is a probabilistic reversible automaton with zj states that recognizes the
language Lj with the probability 19

36 ,
(2) any deterministic finite automaton recognizing Lj has at least

(2
1

4 )zj = (1.189207115 . . .)zj states.

Theorem 2. There exists an infinite sequence of regular languages L1, L2, L3, . . .
in a 2-letter alphabet and an infinite sequence of positive integers z1, z2, z3, . . .
such that for arbitrary j:

(1) there is a probabilistic reversible automaton with zj states that recognizes the
language Lj with the probability 68

135 ,
(2) any deterministic finite automaton recognizing Lj has at least

(7
1

14 )zj = (1.149116725 . . .)zj states.

The two theorems above are formulated in [3] as assertions about reversible
probabilistic automata. For probabilistic automata (reversible or not) it was
unknown before the paper [3] whether the gap between the size of probabilistic
and deterministic automata can be exponential. It is easy to re-write the proofs
in order to prove counterparts of Theorems 1 and 2 for quantum finite automata
with pure states. The aim of this paper is to propose a way how to prove a
counterpart of these theorems for quantum finite automata with mixed states.

2 Quantum automata with mixed states

Quantum algorithms with mixed states were first considered by D. Aharonov,
A. Kitaev, N. Nisan [4]. More detailed description of quantum finite automata
with mixed states can be found in A. Ambainis, M. Beaudry, M. Golovkins,
A. Ķikusts, M. Mercer, D. Thérien [5]. Since we are interested only in the most
simple and the most restricted version of these automata, we consider only
so-called Latvian QFA in this paper. These are the quantum finite automata
that can be implemented using the Nuclear Magnetic Resonance (NMR) tech-
nology. All the other types of quantum finite automata with mixed states are
less restrictive.

The automaton is defined by the initial density matrix ρ0. Every symbol ai in
the input alphabet is associated with a unitary matrix Ui. When the automaton



reads the symbol si, the current density matrix ρ is transformed into UiρU†
i .

When the reading of the input word is finished and the end-marker “$” is read,
the current density matrix ρ is transformed into U$ρU†

$ and separate measure-
ments of all states are performed. After that the probabilities of all the accepting
states are totaled, and the probabilities of all the rejecting states are totaled.

It is easy to see that quantum finite automata with pure states described
by C. Moore and J. Crutchfield [23] but not the quantum finite automata with
pure states described by A. Kondacs and J. Watrous [22] can be simulated by
Latvian QFA with no increase in the number of states.

3 From quantum automata to permutations

In this section we show how the problem of proving that quantum finite au-
tomata with mixed states have a super-exponential advantage over deterministic
automata can be reduced to a certain problem about permutation groups.

Definition 1. The Hamming distance or simply distance d(r, s) between two
n-permutations r and s on the set S is the number of elements x ∈ S such that
r(x) 6= s(x). The similarity e(r, s) is the number of x ∈ S such that r(x) = s(x).
Note that d(r, s) + e(r, s) = |S| = n.

Theorem 3. The assertion (1) implies the assertion (2), where:

(1) there is a fixed constant c and an infinite sequence of distinct integers n such
that for each n there is a group Gn of permutations of the set {1, 2, . . . , n},
the group has eΩ(n log n) elements and k generating elements, and the pair-
wise Hamming distance of permutations is at least c · n,

(2) there is an infinite sequence of distinct integers n such that for each n there is
a language Ln in a k-letter alphabet that can be recognized with probability c

2
by a quantum finite automata with mixed states that has 2n states, while any
deterministic finite automaton recognizing Ln must have at least eΩ(n log n)

states.

Proof. For each permutation group Gn we define the language Ln as follows:

The letters of Ln are the k generators of the group Gn and
it consists of words s1s2s3 . . . sm such that the product

s1 ◦ s2 ◦ s3 ◦ · · · ◦ sm differs from the identity permutation.

We will construct a quantum automaton with mixed states. It has 2n states
and the initial density matrix ρ0 is a diagonal block-matrix that consists of n
blocks ρ̃0:

ρ̃0 =
1

2n

(
1 1
1 1

)
. (1)

For example, in the case n = 4 the density matrix ρ0 is given in (3).
For each of k generators gi ∈ Gn we will construct the corresponding unitary

matrix Ui as follows – it is a 2n × 2n permutation matrix, that permutes the



elements in the even positions according to permutation gi, but leaves the odd
positions unpermuted.

For example, g = 3241 can be expressed as the following permutation matrix
that acts on a column vector:

g =




0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0


 . (2)

The initial density matrix ρ0 for n = 4 and the unitary matrix U that corresponds
to the permutation matrix (2) of premutation g are as follows:

ρ0 =
1

8




1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1




, U =




1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0




. (3)

The unitary matrix U$ for the end-marker is also a diagonal block-matrix. It
consists of n blocks that are the Hadamard matrices

H̃ =
1√
2

(
1 1
1 −1

)
. (4)

Notice how the Hadamard matrix H̃ acts on two specific 2× 2 density matrices:

if ρ =
1

2n

(
1 1
1 1

)
, then H̃ρH̃† =

1

2n

(
2 0
0 0

)
, (5)

if ρ =
1

2n

(
1 0
0 1

)
, then H̃ρH̃† =

1

2n

(
1 0
0 1

)
. (6)

For example, when the letter g is read, the unitary matrix U is applied to
the density matrix ρ0 (both are given in equation (3)) and the density matrix
ρ1 = Uρ0U

† is obtained. When the end-marker “$” is read, the density matrix
becomes ρ$ = U$ρ1U

†

$ . Matrices ρ1 and ρ$ are as follows:

ρ1 =
1

8




1 0 0 0 0 0 0 1
0 1 0 0 1 0 0 0
0 0 1 1 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 0 1 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 1 1 0
1 0 0 0 0 0 0 1




, ρ$ =
1

8




1 0 0 0 1
2

1
2

1
2 − 1

2
0 1 0 0 − 1

2 − 1
2

1
2 − 1

2
0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0
1
2 − 1

2 0 0 1 0 1
2

1
2

1
2 − 1

2 0 0 0 1 − 1
2 − 1

2
1
2

1
2 0 0 1

2 − 1
2 1 0

− 1
2 − 1

2 0 0 1
2 − 1

2 0 1




. (7)



Finally, we declare the states in the even positions to be accepting, but the
states in the odd positions to be rejecting. Therefore one must sum up the
diagonal entries that are in the even positions of the final density matrix to find
the probability that a given word is accepted.

In our example the final density matrix ρ$ is given in (7). It corresponds to
the input word “g$”, which is accepted with probability 1

8 (1 + 0 + 1 + 1) = 3
8

and rejected with probability 1
8 (1 + 2 + 1 + 1) = 5

8 . Note that the accepting and
rejecting probabilities sum up to 1.

It is easy to see, that the words that do not belong to the language Ln are
rejected with certainty, because the matrix U$ρ0U

†

$ has all zeros in the even po-
sitions on the main diagonal. However, the words that belong to Ln are accepted
with the probability at least d

2n
= cn

2n
= c

2 , because all permutations are at least
at the distance d from the identity permutation.

It is also easy to see that any deterministic automaton that recognizes the
language Ln must have at least N = |Gn| states, where |Gn| is the size of the
permutation group Gn. If the number of states is less than N , then there are
two distinct words u and v such that the deterministic automaton ends up in the
same state no matter which one of the two words it reads. Since Gn is a group,
for each word we can find an inverse, that returns the automaton in the initial
state (the only rejecting state). Since u and v are different, they have different
inverses and u◦u−1 is the identity permutation and must be rejected, but v◦u−1

is not the identity permutation and must be accepted – a contradiction. ⊓⊔

4 Sharply transitive permutation groups

We are interested in permutation groups such that distinct permutations have
large Hamming distance (see Sect. 3 for the definition of the Hamming distance
d(r, s) and the similarity e(r, s) of two permutations r and s). It turns out that
the notion of Hamming distance is related to the multiple transitivity of groups.

Definition 2. A group G of permutations on the set S is called k-transitive if
for every two k-tuples (x1, x2, . . . , xk) and (y1, y2, . . . , yk) of distinct elements of
S, there is a permutation p ∈ G such that p(xi) = yi for all i ∈ {1, 2, . . . , k}. If
there is exactly one such permutation p, then G is called sharply k-transitive.
Note that a sharply k-transitive group is also sharply (k − 1)-transitive.

It seems that it has been noted only recently (see, e.g., [10]) that the sharp
k-transitivity imposes a restriction on the Hamming distance. This is given by
the following trivial lemma:

Lemma 1. If G is a sharply k-transitive set of n-permutations, then for any
distinct r, s ∈ G:

d(r, s) ≥ n − k + 1. (8)

Proof. Let us assume that d(r, s) < n − k + 1 for some r, s ∈ G. It means, the
similarity e(r, s) ≥ k or both permutations act on some t-tuple (t ≥ k) in the
same way. This is a contradiction, since G is sharply k-transitive. ⊓⊔



Definition 3. G(n, d) denotes the size of the largest group of n-permutations
with the pairwise distance at least d (d ≤ n).

An analogue of the Singleton bound can be obtained for permutations [11]:

Lemma 2. The following upper bound holds:

G(n, d) ≤ n(n − 1)(n − 2) · · · (d + 1)d︸ ︷︷ ︸
n−d+1 multipliers

(9)

with equality if and only if there is a sharply (n − d + 1)-transitive group of
permutations.

Proof. We have d(r, s) ≥ d and e(r, s) ≤ n − d for every distinct r, s ∈ G. It
means, if we fix any (n − d + 1)-tuple x and apply all permutations from G to
it, the obtained tuples y must be different. The number of such tuples y can not
exceed the right hand side of (9).

If the size of the group G matches the upper bound, then all possible tuples
y of n − d + 1 distinct elements of S can be obtained if all permutations of G
are applied to any fixed tuple x. Moreover, for each y there is no more than one
such permutation. It means we can send any (n − d + 1)-tuple x to any y with
exactly one permutation thus the group is sharply (n − d + 1)-transitive.

The other way round – if the group is sharply (n − d + 1)-transitive, we can
send any fixed (n − d + 1)-tuple x to any y with exactly one permutation. Thus
there are at least as many permutations in the group as the right hand side of
(9). There are no other permutations, otherwise it would be possible to send the
given x to some y with two different permutations, which is a contradiction with
the assumption that the group is sharply (n − d + 1)-transitive. ⊓⊔

In the next several subsections we list the main known results on sharply
k-transitive groups (see [6] for the basic facts, [7, 9] for additional information).

4.1 Sharply n-transitive and (n − 1)-transitive groups

It is clear that the symmetric group Sn of all permutations on the set {1, 2, . . . , n}
is sharply n-transitive, because there is exactly one permutation that sends any
n-tuple to any other n-tuple. However, Sn is also sharply (n − 1)-transitive,
because if the action of the permutation on n− 1 elements is known, the action
on the last element is uniquely determined. From Lemma 1 we obtain that the
distance between distinct permutations of Sn is at least 2. It is clear, because
distance 1 is not possible for permutations.

The group Sn can be generated by two generators (in cycle notation):

g1 = (12)(3)(4) . . . (n), (10)

g2 = (123 . . . n). (11)

The first one corresponds to a transposition of first two elements, but the second
one – to a cyclic shift of all elements. The group Sn consists of n! permutations.



4.2 Sharply (n − 2)-transitive groups

The signature or sign of a permutation s is defined as the parity of the number
of inversions in s, i.e., pairs i, j such that i < j, but s(i) > s(j). For example,
s = 3241 has 4 inversions, namely 32, 31, 21, and 41 thus it is an even per-
mutation. It is easy to show that a transposition (a permutation that swaps to
elements) changes the sign of a permutation to the opposite. In fact the signature
“sgn” of a permutation is a group homomorphism from Sn to {−1, 1}, because
for any two permutations r and s we have sgn(s ◦ r) = sgn s · sgn r. Therefore it
is not hard to see that the set of all even permutations of the set {1, 2, . . . , n}
forms a group – the alternating group An.

It is simple to show that An is sharply (n − 2)-transitive – if we know the
action of a permutation on n − 2 elements, the remaining two elements can be
either swapped or remain in the same order. One of these cases corresponds to
an even permutation, but the other – to odd. From Lemma 1 it follows that the
pairwise distance of distinct permutations of An is at least 3. This can also be
obtained directly – even permutations can not have distance 2, because then
they differ only by one transposition and therefore have different signs. Since
the number of odd and even permutations is the same, An consists of n!/2
permutations.

4.3 Sharply 1-transitive groups

An example of a sharply 1-transitive group is the cyclic group Cn that consists
of n permutations and is generated by a cyclic shift

g1 = (123 . . . n). (12)

Cn is clearly sharply 1-transitive, because there is exactly one way how to shift
any element to any other. The pairwise distance between distinct elements of
Cn is exactly n.

4.4 Sharply 2-transitive groups

An infinite sequence of sharply 2-transitive groups can be constructed using an
affine transformation y(x) = ax + b, where a, b ∈ Fn, a 6= 0. Here Fn denotes
the finite field of order n, i.e., a set of n elements together with two binary
operations – addition and multiplication, such that (Fn,+) and (Fn\{0}, ∗) are
Abelian groups and both distribute laws hold. Such a field Fn exists if and only
if n is a power of a prime number.

The function y(x) acts on the elements of the field Fn as a permutation,
because ax1 + b = ax2 + b implies x1 = x2. There are in total n(n − 1) such
permutations and they form a group: if y1(x) = a1x + b1 and y2(x) = a2x + b2,
then (y1 ◦ y2)(x) = y1(y2(x)) = (a1a2)x + (a1b2 + b1) which is also an affine
transformation. To prove that the group is sharply 2-transitive, we have to show



that there is a unique solution to the following system of two linear equations:

{
y1 = ax1 + b

y2 = ax2 + b
(13)

where x1 6= x2 and y1 6= y2. This solution is

a =
y1 − y2

x1 − x2
, b =

x1y2 − x2y1

x1 − x2
. (14)

Thus the group is sharply 2-transitive. In a similar way one can explicitly show
that the pairwise Hamming distance between distinct permutations is at least
n − 1, but it follows from Lemma 1 as well.

4.5 Sharply 3-transitive groups

Let Fq be a finite field, where q is a power of a prime number.

Definition 4. The multiplicative group F
∗
q of the field Fq is the set of all

non-zero elements of Fq, i.e., F ∗
q = Fq\{0}.

Definition 5. The general linear group GL(m, Fq) is the set of all invertible
m×m matrices with elements from the field Fq. A matrix is invertible if it has
a non-zero determinant.

Definition 6. The projective general linear group PGL(m, Fq) is almost the
same as GL(m, Fq), except that matrices M,M ′ ∈ GL(m, Fq) are treated as
equal if there is a non-zero scalar c ∈ F

∗
q such that M = cM ′. In other words

PGL(m, q) = GL(m, q)/F
∗
q .

The matrices from the set GL(m, Fq) form a group, because the matrix mul-
tiplication is associative, the product of two invertible matrices is also invertible
and for each invertible matrix one can find an inverse. This group acts on the
set of non-zero m-dimensional column vectors over Fq as a permutation. The set
PGL(m, Fq) consists of equivalence classes of matrices and is also a group. It
acts on the equivalence classes of non-zero column vectors as a permutation.

The group PGL(m, Fq) is sharply 3-transitive, when m = 2. To prove this,
it is sufficient to show that for any two 3-tuples of vectors X = (x1,x2,x3) and
Y = (y1,y2,y3) from different equivalence classes there is exactly one matrix
M ∈ PGL(2, Fq) that sends the tuple X to Y . For vectors xi and yi this means

M · xi = ci · yi, (15)

where the constant ci is introduced, because we are dealing with the equivalence
classes of vectors. Thus for each i ∈ {1, 2, 3} we have a linear system of equations

(
a b
c d

)(
xi

1

xi
2

)
= ci

(
yi
1

yi
2

)
. (16)



We have to solve these systems with respect to matrix M , but in addition we
have three unknown constants: c1, c2, and c3. In fact, we are allowed to choose
one of them and thus specify some particular matrix M from its equivalence
class. If c3 = 1, the three systems of linear equations (16) are equivalent to




x1
1 x1

2 0 0 y1
1 0

0 0 x1
1 x1

2 y1
2 0

x2
1 x2

2 0 0 0 y2
1

0 0 x2
1 x2

2 0 y2
2

x3
1 x3

2 0 0 0 0
0 0 x3

1 x3
2 0 0







a
b
c
d

−c1

−c2




=




0
0
0
0
y3
1

y3
2




. (17)

It has a unique solution if the determinant does not vanish. Using some algebraic
manipulations one can show that

∣∣∣∣∣∣∣∣∣∣∣∣

x1
1 x1

2 0 0 y1
1 0

0 0 x1
1 x1

2 y1
2 0

x2
1 x2

2 0 0 0 y2
1

0 0 x2
1 x2

2 0 y2
2

x3
1 x3

2 0 0 0 0
0 0 x3

1 x3
2 0 0

∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣
x1

1 x3
1

x1
2 x3

2

∣∣∣∣ ·
∣∣∣∣
x2

1 x3
1

x2
2 x3

2

∣∣∣∣ ·
∣∣∣∣
y1
1 y2

1

y1
2 y2

2

∣∣∣∣ 6= 0. (18)

None of the three small determinants vanish, because we were given that the
3-tuples X and Y consist of vectors from different equivalence classes, but such
vectors are clearly linearly independent. Therefore the big determinant clearly
does not vanish as well and the system (17) has a unique solution.

Let us find the number of equivalence classes of vectors and matrices in
PGL(2, Fq). The number of 2-dimensional non-zero vectors over Fq is q2 − 1.
There are q − 1 non-zero constants and thus there are q − 1 vectors in each
equivalence class. The number of classes is

n =
q2 − 1

q − 1
= q + 1. (19)

The number of matrices in PGL(2, Fq) is

|PGL(2, Fq)| =
|GL(2, Fq)|

q − 1
, (20)

because there are q−1 non-zero constants. The number of matrices in GL(2, Fq)
is the same as the number of pairs of linearly independent non-zero vectors. The
first vector can be chosen in q2 − 1 ways and it determines a set of q− 1 linearly
dependent vectors and the second vector can be chosen in (q2−1)−(q−1) = q2−q
ways. Therefore |GL(2, Fq)| = (q2 − 1)(q2 − q) and

|PGL(2, Fq)| = (q + 1)q(q − 1) = n(n − 1)(n − 2). (21)

The method for obtaining sharply 3-transitive groups given above can be
described using a different formalism – the linear fractional transformation (also



called Möbius transformation):

y(x) =
ax + b

cx + d
, (22)

where a, b, c, d ∈ Fq and ad− bc 6= 0 (otherwise a/c = b/d = α and y(x) = α). It
acts on the set Fq ∪{∞} as a permutation. The following conventions regarding
the element ∞ are used:

y

(
−d

c

)
= ∞, y(∞) =

{
∞ if c=0,
a
c

otherwise.
(23)

In fact, the element ∞ corresponds to the vector ( 1
0 ) in the above construction.

Note that the inverse of (22) is also a linear fractional transformation:

x(y) =
−dy + b

cy − a
. (24)

The same stands for the composition of two linear fractional transformations.

4.6 Sharply 4-transitive and 5-transitive groups

It is known that the Mathieu group M11 is sharply 4-transitive and therefore
the pairwise Hamming distance of distinct elements is at least 8. It consists of
11 · 10 · 9 · 8 = 7920 elements. It is generated by

g1 = (2, 10)(4, 11)(5, 7)(8, 9)(1)(3)(6), (25)

g2 = (1, 4, 3, 8)(2, 5, 6, 9)(7)(10)(11). (26)

The Mathieu group M12 is sharply 5-transitive and the pairwise Hamming
distance of distinct elements is also at least 8. It has 12 · 11 · 10 · 9 · 8 = 95040
elements and is generated by [10]:

g1 = (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12), (27)

g2 = (1, 2, 3)(4, 5, 7)(8, 9, 11)(6)(10)(12). (28)

4.7 Summary of sharply k-transitive groups

The Table 1 provides a summary of the sharply k-transitive groups discussed
in the Sections 4.1 trough 4.6. These groups match the bound for G(n, d) in
Lemma 2 with equality. In Fig. 1 the points of the (n, d)-plane where the maximal
value of G(n, d) can be reached are shown. According to Table 1 these points can
be divided into 5 infinite classes (indicated with lines) and two sporadic groups –
the Mathieu groups. It turns out that there are no other groups of maximal size
except the Mathieu groups M11 and M12 between the lines d ≥ 4 and d ≤ n− 3:

Theorem 4 (see [6–8, 10]). A sharply k-transitive group (k ≥ 4) is isomorphic
either to Sn (n ≥ 4), An (n ≥ 6) or one of the Mathieu groups M11 or M12.

However, the non-existence of maximal groups does not imply that there are
no groups with the required properties (see Sect. 6).



5 10 15 20
n

5

10

15

20

d

Fig. 1. The maximal permutation groups.

Table 1. The summary of sharply k-transitive groups. The meanings of columns are
as follows: d – the pairwise Hamming distance, n – the possible values of the size of
the set S (pm stands for a power of any prime number), |Gn| – the size of the group,
Gn – the description of the group.

k d n |Gn| Gn Section

n, n − 1 2 any n! Sn 4.1
n − 2 3 any n!/2 An 4.2

5 8 12 95040 M12 4.6
4 8 11 7920 M11 4.6
3 n − 2 pm + 1 n(n − 1)(n − 2) PGL(2, Fn−1) 4.5
2 n − 1 pm n(n − 1) y(x) = ax + b 4.4
1 n any n Cn 4.3



5 Permuting polynomials

The affine transformations considered in Sect. 4.4 were actually linear polyno-
mials of x over the field Fn. The linear fractional transformation considered
in Sect. 4.5 is also a polynomial, because for any non-zero a ∈ Fq we have
a−1 ≡ aq−2 (this is a consequence of the analog of Fermat’s Little Theorem
ap−1 ≡ 1 mod p for finite fields). From this point of view it is interesting to
study the permuting polynomials over finite fields, because they can give rise to
permutation groups with large pairwise Hamming distance. In this section we
give some basic results on groups generated by permuting polynomials.

Let us assume that the size n of the set S on which the permutations act is a
power of a prime number (otherwise we can augment the set S with additional
elements). Then we can put S = Fn and express any permutation (actually any
function) f on this set as a polynomial (we assume that f acts trivially on the
appended elements if |S| was not a power of a prime number) as follows:

Definition 7. The Lagrange interpolating polynomial of a function f defined
on a finite field Fn as f(x1) = y1, f(x2) = y2, . . . , f(xn) = yn is given by:

P (x) =

n∑

i=1

Pi(x), where Pi(x) =

n∏

j=1
j 6=i

x − xj

xi − xj

yi. (29)

Note that the division is performed in the field Fn and the denominator always
differs from zero.

It is easy to see that the polynomial P (x) mimics the function f(x), i.e.,
P (x) = f(x) for all x ∈ Fn. As an example we will consider the permutation
groups over the field F5.

The symmetric group S5 is generated by g1(x) = x + 1 and g2(x) = x3. It
consists of all polynomials of the form:

ax3 + bx2 + 2a3b2x + d, a 6= 0, (30)

cx + d, c 6= 0. (31)

The alternating group A5 is generated by g1(x) = x + 1 and g2(x) = 2x3. It
consists of all polynomials of the form (30) and (31), except that in addition
we require that a ∈ {2, 3} (non-squares) and c ∈ {1, 4} (squares) respectively.
Affine transformations are generated by g1(x) = x + 1 and g2(x) = 2x and they
are of the form (31). The cyclic group C5 is generated by g1(x) = x + 1 and is
of the form (31) where c = 1.

As an example of a permutation group generated by polynomials when |S|
is not a power of a prime number, we can mention the case G(6, 4) = 120. The
corresponding group is generated by g1(x) = 6x + 5 and g2(x) = x4 + 3x + 1
where both polynomials are modulo 7.



Table 2. Experimentally obtained results for G(n, d). The columns have the following
meaning: n – the size of the set S, d – the pairwise Hamming distance, G(n, d) – the size
of the group obtained, “Bound” – the upper bound for G(n, d) according to Lemma 2,
“Generators” – the two generators of the group.

n d G(n, d) Bound Generators

7 4 168 840 6, 4, 3, 2, 5, 1, 7
6, 1, 7, 5, 2, 3, 4

8 5 336 1680 3, 8, 6, 2, 4, 5, 1, 7
7, 4, 6, 3, 1, 5, 2, 8

8 4 1344 6720 2, 6, 8, 4, 5, 7, 1, 3
7, 4, 3, 5, 1, 8, 6, 2

9 6 1512 3024 4, 5, 1, 8, 3, 7, 6, 2, 9
3, 4, 8, 5, 7, 1, 6, 9, 2

9 5 1512 15120 9, 4, 1, 6, 5, 2, 7, 8, 3
1, 4, 5, 3, 7, 9, 8, 2, 6

9 4 1512 60480 7, 2, 8, 3, 5, 6, 9, 4, 1
6, 1, 3, 8, 2, 4, 9, 5, 7

10 7 720 5040 3, 9, 5, 7, 4, 8, 10, 6, 1, 2
7, 9, 4, 5, 3, 6, 8, 1, 10, 2

10 6 1512 30240 8, 2, 10, 7, 4, 3, 1, 6, 5, 9
1, 2, 8, 5, 10, 6, 3, 7, 9, 4

10 5 1512 151200 1, 10, 3, 9, 6, 8, 5, 4, 7, 2
1, 10, 8, 3, 2, 4, 5, 7, 6, 9

10 4 1920 604800 5, 1, 4, 8, 9, 7, 6, 10, 2, 3
7, 8, 2, 1, 10, 3, 9, 6, 4, 5

15 12 2520 32760 7, 2, 4, 5, 11, 10, 13, 15, 3, 9, 6, 8, 14, 12, 1
9, 15, 11, 6, 4, 2, 10, 13, 7, 12, 8, 1, 14, 3, 5

16 12 40320 524160 16, 5, 6, 12, 14, 13, 11, 1, 10, 3, 7, 4, 15, 8, 9, 2
6, 7, 14, 8, 15, 3, 12, 2, 9, 10, 13, 11, 4, 16, 1, 5



6 Experimental results

We performed computer experiments to find permutation groups with pairwise
Hamming distance in the region between d ≥ 4 and d ≤ n − 3. The obtained
results for n = 7, 8, 9, 10 are shown in Table 2. In addition we mention also two
large groups for n = 15 and n = 16.

These groups were obtained by choosing two random permutations g1 and g2

and computing their closure with respect to the product of permutations. If at
some point the distance between any two distinct obtained permutations became
less than some predefined dmin, the process was terminated and restarted with
another random generators g1 and g2. Some of the groups obtained in this way
have very interesting properties:

(1) G(7, 4) has 168 = 7 · 6 · 4 elements and is isomorphic to the automorphism
group of the Fano plane.

(2) G(8, 4) has 1344 = 8 ·168 = 8 ·7 ·6 ·4 elements. This group has the property,
that the stabilizers of any element form a group that is isomorphic to the
automorphism group of the Fano plane. This group also has a property that
for any 3-tuples x and y of distinct elements there are exactly 4 permutations
that send x to y. It is isomorphic to the automorphism group of the octonion
multiplication table.

(3) G(9, 6) has 1512 = 9 ·168 = 9 ·8 ·7 ·3 elements and it has the same stabilizer
property, but for each 3-tuples x and y there are exactly 3 permutations that
send x to y.

(4) G(15, 12) has 2520 = 15 · 168 = 15 · 14 · 12 elements and it also has the
stabilizer property, but for each 2-tuples x and y there are exactly 12 per-
mutations that send x to y.

(5) G(16, 12) has 40320 = 16 · 15 · 168 = 16 · 15 · 14 · 12 elements. The stabilizers
of any two elements form a group that is isomorphic to the automorphism
group of the Fano plane. For any 3-tuples x and y there are exactly 12
permutations that send x to y.
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